Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ISPRS International Journal of Geo-Information ; 12(4):148, 2023.
Article in English | ProQuest Central | ID: covidwho-2292894

ABSTRACT

To understand the complex phenomena in social space and monitor the dynamic changes in people's tracks, we need more cross-scale data. However, when we retrieve data, we often ignore the impact of multi-scale, resulting in incomplete results. To solve this problem, we proposed a management method of multi-granularity dimensions for spatiotemporal data. This method systematically described dimension granularity and the fuzzy caused by dimension granularity, and used multi-scale integer coding technology to organize and manage multi-granularity dimensions, and realized the integrity of the data query results according to the correlation between the different scale codes. We simulated the time and band data for the experiment. The experimental results showed that: (1) this method effectively solves the problem of incomplete query results of the intersection query method. (2) Compared with traditional string encoding, the query efficiency of multiscale integer encoding is twice as high. (3) The proportion of different dimension granularity has an impact on the query effect of multi-scale integer coding. When the proportion of fine-grained data is high, the advantage of multi-scale integer coding is greater.

2.
IEEE Access ; 10: 46782-46795, 2022.
Article in English | MEDLINE | ID: covidwho-1853414

ABSTRACT

In view of the lack of data association in spatiotemporal information analysis and the lack of spatiotemporal situation analysis in knowledge graphs, this article combines the semantic web of the geographic knowledge graph with the visual analysis model of spatial information and puts forward the comprehensive utilization of the related technologies of the geographic knowledge graph and big data visual analysis. Then, it realizes the situational analysis of COVID-19 (Coronavirus Disease 2019) and the exploration of patient relationships through interactive collaborative analysis. The main contributions of the paper are as follows. (1) Based on the characteristics of the geographic knowledge graph, a patient entity model and an entity relationship type and knowledge representation method are proposed, and a knowledge graph of the spatiotemporal information of COVID-19 is constructed. (2) To analyse the COVID-19 patients' situations and explore their relationships, an analytical framework is designed. The framework, combining the semantic web of the geographic knowledge graph and the visual analysis model of geographic information, allows one to analyse the semantic web by using the node attribute similarity calculation, key stage mining, community prediction and other methods. (3)An efficient epidemic prevention and anti-epidemic method is proposed which is of referential significance. It is based on experiments and the collaborative analysis of the semantic web and spatial information, allowing for real-time situational understanding, the discovery of patients' relationships, the analysis of the spatiotemporal distribution of patients, super spreader mining, key node analysis, and the prevention and control of high-risk groups.

3.
Int J Environ Res Public Health ; 17(20)2020 10 21.
Article in English | MEDLINE | ID: covidwho-890387

ABSTRACT

The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly impacts the regional environment and human health. This study assesses PM2.5 exposure and health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal big data, including Tencent location-based services (LBS) data, place of interest (POI), and PM2.5 site monitoring data. Specifically, the empirical orthogonal function (EOF) is utilized to analyze the spatiotemporal variation of PM2.5 concentration firstly. Then, population exposure and health risks of PM2.5 during the COVID-19 epidemic have been assessed based on LBS data. To further understand the driving factors of PM2.5 pollution, the relationship between PM2.5 concentration and POI data has been quantitatively analyzed using geographically weighted regression (GWR). The results show the time series coefficients of monthly PM2.5 concentrations distributed with a U-shape, i.e., with a decrease followed by an increase from January to December. In terms of spatial distribution, the PM2.5 concentration shows a noteworthy decline over the Central and North China. The LBS-based population density distribution indicates that the health risk of PM2.5 in the west is significantly lower than that in the Middle East. Urban gross domestic product (GDP) and urban green area are negatively correlated with PM2.5; while, road area, urban taxis, urban buses, and urban factories are positive. Among them, the number of urban factories contributes the most to PM2.5 pollution. In terms of reducing the health risks and PM2.5 pollution, several pointed suggestions to improve the status has been proposed.


Subject(s)
Big Data , Coronavirus Infections , Environmental Exposure/analysis , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Risk Assessment , Betacoronavirus , COVID-19 , China/epidemiology , Humans , Middle East , SARS-CoV-2 , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL